Purpose
To compute an LU factorization of an n-by-n upper Hessenberg matrix H using partial pivoting with row interchanges.Specification
      SUBROUTINE MB02SD( N, H, LDH, IPIV, INFO )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDH, N
C     .. Array Arguments ..
      INTEGER           IPIV(*)
      DOUBLE PRECISION  H(LDH,*)
Arguments
Input/Output Parameters
  N       (input) INTEGER
          The order of the matrix H.  N >= 0.
  H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
          On entry, the n-by-n upper Hessenberg matrix to be
          factored.
          On exit, the factors L and U from the factorization
          H = P*L*U; the unit diagonal elements of L are not stored,
          and L is lower bidiagonal.
  LDH     INTEGER
          The leading dimension of the array H.  LDH >= max(1,N).
  IPIV    (output) INTEGER array, dimension (N)
          The pivot indices; for 1 <= i <= N, row i of the matrix
          was interchanged with row IPIV(i).
Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          > 0:  if INFO = i, U(i,i) is exactly zero. The
                factorization has been completed, but the factor U
                is exactly singular, and division by zero will occur
                if it is used to solve a system of equations.
Method
  The factorization has the form
     H = P * L * U
  where P is a permutation matrix, L is lower triangular with unit
  diagonal elements (and one nonzero subdiagonal), and U is upper
  triangular.
  This is the right-looking Level 1 BLAS version of the algorithm
  (adapted after DGETF2).
References
-Numerical Aspects
2 The algorithm requires 0( N ) operations.Further Comments
NoneExample
Program Text
*     MB02SD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2010 NICONET e.V.
*
*     .. Parameters ..
      DOUBLE PRECISION ZERO
      PARAMETER        ( ZERO = 0.0D0 )
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, NRHMAX
      PARAMETER        ( NMAX = 20, NRHMAX = 20 )
      INTEGER          LDB, LDH
      PARAMETER        ( LDB = NMAX, LDH = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 3*NMAX )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = NMAX )
*     .. Local Scalars ..
      DOUBLE PRECISION HNORM, RCOND
      INTEGER          I, INFO, INFO1, J, N, NRHS
      CHARACTER*1      NORM, TRANS
*     .. Local Arrays ..
      DOUBLE PRECISION H(LDH,NMAX), B(LDB,NRHMAX), DWORK(LDWORK)
      INTEGER          IPIV(NMAX), IWORK(LIWORK)
*     .. External Functions ..
      DOUBLE PRECISION DLAMCH, DLANHS
      EXTERNAL         DLAMCH, DLANHS
*     .. External Subroutines ..
      EXTERNAL         DLASET, MB02RD, MB02SD, MB02TD
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read in the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, NRHS, NORM, TRANS
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99994 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( H(I,J), J = 1,N ), I = 1,N )
         IF ( NRHS.LT.0 .OR. NRHS.GT.NRHMAX ) THEN
            WRITE ( NOUT, FMT = 99993 ) NRHS
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,NRHS ), I = 1,N )
            IF ( N.GT.2 )
     $         CALL DLASET( 'Lower', N-2, N-2, ZERO, ZERO, H(3,1), LDH )
*           Compute the LU factorization of the upper Hessenberg matrix.
            CALL MB02SD( N, H, LDH, IPIV, INFO )
*           Estimate the reciprocal condition number of the matrix.
            HNORM = DLANHS( NORM, N, H, LDH, DWORK )
            CALL MB02TD( NORM, N, HNORM, H, LDH, IPIV, RCOND, IWORK,
     $                   DWORK, INFO1 )
            IF ( INFO.EQ.0 .AND. RCOND.GT.DLAMCH( 'Epsilon' ) ) THEN
*              Solve the linear system.
               CALL MB02RD( TRANS, N, NRHS, H, LDH, IPIV, B, LDB, INFO )
*
               WRITE ( NOUT, FMT = 99997 )
            ELSE
               WRITE ( NOUT, FMT = 99998 ) INFO
            END IF
               DO 10 I = 1, N
                  WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,NRHS )
   10          CONTINUE
            WRITE ( NOUT, FMT = 99995 ) RCOND
         END IF
      END IF
      STOP
*
99999 FORMAT (' MB02SD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB02SD = ',I2)
99997 FORMAT (' The solution matrix is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' Reciprocal condition number = ',D12.4)
99994 FORMAT (/' N is out of range.',/' N = ',I5)
99993 FORMAT (/' NRHS is out of range.',/' NRHS = ',I5)
      END
Program Data
MB02SD EXAMPLE PROGRAM DATA 5 4 O N 1. 2. 6. 3. 5. -2. -1. -1. 0. -2. 0. 3. 1. 5. 1. 0. 0. 2. 0. -4. 0. 0. 0. 1. 4. 5. 5. 1. 5. -2. 1. 3. 1. 0. 0. 4. 5. 2. 1. 1. 3. -1. 3. 3. 1.Program Results
MB02SD EXAMPLE PROGRAM RESULTS The solution matrix is 0.0435 1.2029 1.6377 1.1014 1.0870 -4.4275 -5.5580 -2.9638 0.9130 0.7609 -0.1087 0.6304 -0.8261 2.4783 4.2174 2.7391 -0.0435 0.1304 -0.3043 -0.4348 Reciprocal condition number = 0.1554D-01
Click here to get a compressed (gzip) tar file containing the source code of the routine, the example program, data, documentation, and related files.
Return to index